Data Particlization for Next Generation Data Mining

Takeaki Uno National Institute of Informatics

Akihiro Yamamoto Yukinobu Hamuro Kumiyo Nakakoji

Kyoto University Kwansei Gakuin University Kyoto University

21/Apr/2016

Mining & other Methodologies on BigData

Mining finds **structures** that are used by methods in upper layers from big, shallow meaning, sparse, noisy, and ill-granularity data

Data Abstraction

<u>ex.) trajectory</u>: sequence of points \rightarrow sequence of few places

The Data Particlization Approach

- Existing methods design "particle-like structures" independently
- Mining is not directed to good utilities of the methods
- Data particlization serves as the basis for the data analysis tasks

Machine Learning without Abstract

- Partition the data into two areas, including more reds, and not
- Even though attains high accuracy, the solution is
 - "hard to understand" the mechanism

With Particles

Easier to get some meanings, or inspires

Why not Clustering?

Clustering finds (global) "classes", but particles are "structures" ... so, has many problems

huge small solutions, unbalanced sizes, skewed granularity

Basic Idea : Clarify Structures

Why bad? ... because, the boundaries of the structures are not clear

The analogy: making the picture visually clearer sharpening edges, erasing noise, removing shadows, ... and **rearranging** objects

At the same time, the accuracy in recognizing, classifying, and segmenting of the objects in the picture can be increased

Do the same in Bigdata!

A Proposed Method: Data Polishing

Reveal hidden structures by modifying the data based on feasible hypotheses

so that

• parts of the data are modified in such a way that any solution and structure would not be lost

- ambiguities are resolved, similar solutions are unified, and the number of solutions is reduced
- the quality of the data analysis will not be deteriorated

Preliminary Study for Graph Clustering

the scale	original	polished
#nodes	3,282	3,282
#edges	35,168	73,132
density	3.3‰	6.8‰
#cliques	32,953	343

Companies and their business relations

Prediction accuracy: accuracy on customer attribute prediction by clustering methods

	clique	Newman	graph cut
original	60.60%	59.70%	60.03%
particle	71.36%	62.76%	67.78%

Noise robustness:

discovery rates of clusters (particles) by clustering methods

	polishing	Newman	graph cut
noise 10%	100.00%	68.74%	76.10%
noise 40%	99.69%	7.91%	77.03%

+ acceptance ratio for dating proposal in marriage support: $13\% \rightarrow 29\%$

+ target size (users to show ads) without loss on internet advertisement : $\rightarrow 1/10$

Organization

Extracting **needs** and **importance** from **data/user analysis**, and algorithms for **data polishing** and **semantic structures** of particles